Rice Stress Associated Protein 1 (OsSAP1) Interacts with Aminotransferase (OsAMTR1) and Pathogenesis-Related 1a Protein (OsSCP) and Regulates Abiotic Stress Responses
نویسندگان
چکیده
Stress associated proteins (SAPs) are the A20/AN1 zinc-finger containing proteins which can regulate the stress signaling in plants. The rice SAP protein, OsSAP1 has been shown to confer abiotic stress tolerance to plants, when overexpressed, by modulating the expression of endogenous stress-related genes. To further understand the mechanism of OsSAP1-mediated stress signaling, OsSAP1 interacting proteins were identified using yeast two-hybrid analysis. Two novel proteins, aminotransferase (OsAMTR1) and a SCP/TAPS or pathogenesis-related 1 class of protein (OsSCP) were found to interact with OsSAP1. The genes encoding OsAMTR1 and OsSCP were stress-responsive and showed higher expression upon abiotic stress treatments. The role of OsAMTR1 and OsSCP under stress was analyzed by overexpressing them constitutively in Arabidopsis and responses of transgenic plants were assessed under salt and water-deficit stress. The OsAMTR1 and OsSCP overexpressing plants showed higher seed germination, root growth and fresh weight than wild-type plants under stress conditions. Overexpression of OsAMTR1 and OsSCP affected the expression of many known stress-responsive genes which were not affected by the overexpression of OsSAP1. Moreover, the transcript levels of OsSCP and OsAMTR1 were also unaffected by the overexpression of OsSAP1. Hence, it was concluded that OsSAP1 regulates the stress responsive signaling by interacting with these proteins which further regulate the downstream stress responsive gene expression.
منابع مشابه
Corrigendum: The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice
Plants can perceive environmental changes and respond to external stressors. Here, we show that OsNAC2, a member of the NAC transcription factor family, was strongly induced by ABA and osmotic stressors such as drought and high salt. With reduced yields under drought conditions at the flowering stage, OsNAC2 overexpression lines had lower resistance to high salt and drought conditions. RNAi pla...
متن کاملPdk1 kinase regulates basal disease resistance through the OsOxi1-OsPti1a phosphorylation cascade in rice.
The AGC kinase OsOxi1, which has been isolated as an interactor with OsPti1a, positively regulates basal disease resistance in rice. In eukaryotes, AGC kinase family proteins are regulated by 3-phosphoinositide-dependent protein kinase 1 (Pdk1). In Arabidopsis, AtPdk1 directly interacts with phosphatidic acid, which functions as a second messenger in both biotic and abiotic stress responses. Ho...
متن کاملOverexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice
Pathogenesis-related proteins play multiple roles in plant development and biotic and abiotic stress tolerance. Here, we characterize a rice defense related gene named "jasmonic acid inducible pathogenesis-related class 10" (JIOsPR10) to gain an insight into its functional properties. Semi-quantitative RT-PCR analysis showed up-regulation of JIOsPR10 under salt and drought stress conditions. Co...
متن کاملOsSRO1a Interacts with RNA Binding Domain-Containing Protein (OsRBD1) and Functions in Abiotic Stress Tolerance in Yeast
SRO1 is an important regulator of stress and hormonal response in plants and functions by interacting with transcription factors and several other proteins involved in abiotic stress response. In the present study, we report OsRBD1, an RNA binding domain 1- containing protein as a novel interacting partner of OsSRO1a from rice. The interaction of OsSRO1a with OsRBD1 was shown in yeast as well a...
متن کاملMorphological and molecular responses of sunflower (Helianthus annuus L.) lines to drought stress
Drought stress is a serious adverse factor limiting growth and productivity of sunflower. Evaluation of defense systems is important for producing resistant cultivars. In this study, some agro-morphological and molecular characteristics of six sunflower lines were evaluated under normal and irrigation at 40 and 60% of field capacity in randomized complete block design (RCBD). The results showed...
متن کامل